第三节 土的物理性质

(一) 土的实测指标

1. 天然密度

$$\rho = \frac{m}{V} = \frac{m_s + m_w}{V}$$

$2. 土粒比重(G_s)$

土粒比重也称为相对密度,指土颗粒本身的密度与水的密度之比。即土在 105~110℃下烘至恒重时的质量与同体积 4℃蒸馏水质量的比值。

$$G_{S} = \frac{m_{s}}{V_{s} \rho_{w}}$$

3. 含水量

含水量是指土中所含水的质量与土颗粒质量的比值,用百分数表示:

$$w = \frac{m_w}{m_s} \times 100$$

土的密度、土粒比重、土的含水量均可以直接通过试验方法测定其数值。

(二)导出指标

- 1. 反映土与水的关系的指标
- 1) 土的饱和含水量(w_{max})

$$w_{\text{max}} = \frac{V_n \rho_w}{m_s} \times 100$$

- 2) 土的最佳含水量(w)
- 3) 土的饱和度 (S_r)

土的饱和度是指土中水的体积(V_w)与土的全部孔隙体积(V_n)的比值,用百分数表示:

$$S_r = \frac{V_w}{V_n} \times 100$$

- 2. 反映土的孔隙性结构的指标
- 1) 孔隙比 (e)

孔隙比是指土中孔隙的体积(V_n)和土颗粒的体积(V_s)之比。

$$e = \frac{V_n}{V_s}$$

2) 孔隙度(n)

在天然状态下,土中的孔隙体积与土的总体积的比值,称为孔隙度或孔隙率, 用百分数表示:

$$n = \frac{V_n}{V} \times 1 \ 0 \ \%$$

3. 砂土的相对密实度 (D_r)

$$D_r = \frac{e_{\text{max}} - e}{e_{\text{max}} - e_{\text{min}}}$$

- 3. 其他指标
- 1) 干密度 (ρ_d)
- 2) 饱和密度(ρ_f)
- 3) 水下密度 (ρ')

(三) 土的物理性质指标间的相互关系

表 5-5 土的三相组成比例指标换算公式

指标名称	表达式	指标来源	实际应用
土粒比重 G_s	$G_s = \frac{m_s}{V_s \rho_w}$	由试验确定	1. 换算 <i>n</i> 、e、ρ _d ;
	,	11 6 13 E 1917 C	2. 工程计算
密度 $ ho$	$ \rho = \frac{m}{V} $		1. 换算 <i>n、e</i> ;
(g/cm ³)	•	由试验确定	2. 说明土的密度
干密度 $ ho_{\scriptscriptstyle d}$	$\rho_d = \frac{m_s}{V}$	$ \rho_d = \frac{\rho}{1+w} $	1. 换算 <i>n、e</i> ;
(g/cm^3)	V = V	I i w	2. 粒度分析、压缩试验
J			资料整理
饱和密度 $ ho_{\scriptscriptstyle f}$	$\rho_f = \frac{m_s + V_n \rho_w}{V}$	$ \rho_f = \frac{\rho(G_s - 1)}{G_s(1 + w)} + 1 $	
(g/cm ³)	V	$G_s(1+W)$	

水下密度 $ ho'$	$\rho' = \rho_f - \rho_w$	$\rho' - \rho(G_s - 1)$	1. 计算潜水面以下地基
(g/cm^3)		$\rho' = \frac{\rho(G_s - 1)}{G_s(1 + w)}$	自重应力;
(g/cm /			2. 分析人工边坡稳定
天然含水量	$w = \frac{m_w}{}$		1. 换算 n 、 e 、 ρ_d 、 S_r ;
W	m_s	由试验确定	2. 计算土的稠度指标
饱和含水量	$w_{\text{max}} = \frac{V_n \rho_w}{m_s}$	$w_{\text{max}} = \frac{G_s(1+w) - \rho}{G_s \rho}$	
$W_{ m max}$	m_s	$G_s ho$	
饱和度	$S_{u} = \frac{V_{w}}{V_{w}}$	$S = G_s \rho w$	1. 说明土的饱水状态;
S_r	$S_r = \frac{V_w}{V_n}$	$S_r = \frac{G_s \rho w}{G_s (1+w) - \rho}$	2. 砂土、黄土计算地基
			承载力
孔隙度	V_n	n-1ρ	1. 计算地基承载力
n	$n = \frac{V_n}{V}$	$n = 1 - \frac{\rho}{G_s(1+w)}$	2. 砂土估计密度和渗
			透系数;
			3. 压缩试验整理资料
孔隙比	$\rho - \frac{V_n}{V_n}$	$e = \frac{G_s(1+w)}{Q} - 1$	1. 说明土中孔隙体积;
e	$e = \frac{V_n}{V_s}$	$\epsilon = \frac{1}{\rho}$	2. 换算 ρ'、e;